

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

OFFICE OF NAVAL RESEARCH

CONTRACT NOO014-86-K-0234

TECHNICAL REPORT No. 9

Preparation and Characterization of $Co(II)/ZrO_2$ Solid Solution

by

Ping Wu, Robert Kershaw, Kirby Dwight and Aaron Wold

Prepared for Publication

in the

Materials Research Bulletin

Brown University
Department of Chemistry
Providence, RI 02912

October 27, 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.

The second and the se

PREPARATION AND CHARACTERIZATION OF Co(II)/ZrO2 SOLID SOLUTION

by
Ping Wu, Robert Kershaw, Kirby Dwight and Aaron Wold*
Department of Chemistry, Brown University
Providence, RI 02912

*Address all correspondence

A-1

ABSTRACT

2194 1 100 24 31

Samples of cubic, ZrO₂ containing up to almost 10 atomic percent cobalt were prepared by codecomposition of the nitrate. Magnetic susceptibility measurements confirmed the limit of solubility and the presence of the cobalt as Co(II). The reduction of the cobalt inserted in cubic zirconia took place at a considerably higher temperature than bulk cobalt oxide.

MATERIALS INDEX: Cobalt stabilized cubic ZrO₂.

Introduction

Cubic ZrO₂ samples containing some transition metal oxides including rhodium oxide (1), iron oxide (2), chromium oxide (3) and nickel oxide (4) were studied previously in this laboratory. Their structures, magnetic properties and the stabilities towards reduction have been studied. There is little published data concerning the properties of the members in the cobalt oxide-zirconium oxide system. Structural studies of the supported Co(II)/ZrO₂ catalysts were carried out by Bettman and Yao (5, 6). Their samples were prepared by incipient wetness methods and the crystal structure of the products indicated the presence of monoclinic ZrO₂. Previous work has indicated that the presence of monoclinic ZrO₂ is characteristic of an absence of reaction between the ZrO₂ support and the catalyst.

It is the purpose of this work to investigate the formation of solid solution between ZrO₂ and cobalt oxide and to study the magnetic properties of such a system. In addition, the stability towards reduction of cubic ZrO₂ samples containing various concentrations of reacted cobalt oxide will be determined.

Experimental

Bulk cobalt oxide samples were prepared by decomposition of $Co(NO_3)_3 \cdot 9H_2O$. The nitrate was dissolved in water and dried at 150°C for 12 hours. The samples were then ground and decomposed at temperatures ranging from 500°C to 800°C. X-ray analysis of the final products indicated the formation of Co_3O_4 .

0 " 0 " 1

Zirconium oxide samples, containing various percentages of cobalt, were prepared by dissolving the desired quantity of analyzed cobalt nitrate $Co(NO_3)_3 \cdot 9H_2O$ with appropriate amounts of $ZrO(NO_3)_2$. Two ml of water were added for each millimole of total nitrates. The solution was then dried at $150^{\circ}C$ for 12 hours and the product was ground and heated at $500^{\circ}C$ for 24 hours. Some samples were then subsequently heated at elevated temperatures between $500-800^{\circ}C$. In order to ascertain the temperatures for complete decomposition of the nitrates, preliminary decomposition experiments were carried out in a Cahn system 113 thermal balance.

X-ray powder diffraction patterns of the samples were obtained using a Philips diffractometer and monochromated high intensity $\text{CuK}\alpha_1$ radiation (λ = 1.5405Å). For qualitative identification of the phases present, the diffraction patterns were taken in the range 12° < 20 < 80° with a scan rate of 1° 20/min and a chart speed of 30 inches/hr. The scan rate used to obtain x-ray patterns for calculation of cell parameters was 0.25 20/min with a chart speed of 30 in/hr. Cell parameters were obtained from a least squares refinement of the data with the aid of a computer program which corrected for the systematic experimental errors.

Magnetic susceptibilities were measured using a Faraday balance at a field strength of 10.4 kOe. Honda-Owens (field dependency) plots were also made and all magnetic susceptibility data were corrected for core diamagnetism. Magnetic susceptibility measurements were made from liquid nitrogen temperature to 315K.

Temperature programmed reductions were carried out in a thermal balance equipped with a magnet (7). The weight of the sample was determined using a Cahn electrobalance (model RG) alternately in a magnetic field gradient and without the magnetic field gradient. The temperature was measured by a type S thermocouple which was positioned just below the sample. This technique combines magnetic measurements with thermogravimetric analysis and is very sensitive to the appearance and growth of a magnetic phase during the reaction (7). An 85%Ar/15%H₂ mixture was predried by P₂O₅ and passed at a rate of 60 ml/min into the TGA balance. The samples were heated at 50°C per hour.

DE PRODUCTION DESCRIPTION CONTRACTOR CONTRACTOR CONTRACTOR MANAGEMENTAL MANAGEMENT PRODUCTION OF PRO

Results and Discussion

Bulk samples of cobalt oxide were prepared by the decomposition of $Co(NO_3)_3 \cdot 9H_2O$ at temperatures ranging from $500^{\circ}C$ to $800^{\circ}C$. X-ray diffraction analysis of the products indicated the presence of a single phase, namely Co_3O_4 . In order to analyze any deviation from stoichiometry, temperature programmed reduction was carried out by thermogravimetric analysis. The weight change in the process of T.P.R occurs between 230° and $320^{\circ}C$. The total observed weight change is 26.6%, whereas the calculated weight change of the reduction of Co_3O_4 to cobalt metal is 26.5%. These results indicate that the composition of bulk cobalt oxide prepared under these conditions is Co_3O_4 .

Samples of the cobalt-zirconium oxide system were prepared by the codecomposition of $Co(NO_3)_3.9H_2O$ and $ZrO(NO_3)_2$. X-ray analyses of products containing varying compositions are given in Table 1. All of the products reported in Table 1 were prepared at $500^{\circ}C$.

Decomposition of pure zirconyl nitrate resulted in the formation of tetragonal ZrO_2 containing a small quantity of monoclinic ZrO_2 . For the samples prepared by codecomposition of the nitrates, x-ray analysis indicated that ZrO_2 crystallized with a cubic structure even when only 5 atomic percent of cobalt was introduced into the ZrO_2 . This is consistent with previous reports (8) that the stabilization of cubic ZrO_2 requires the presence of a solid solution with cobalt oxide. Products containing up to 10 atomic percent of cobalt showed no evidence of bulk cobalt oxide in the x-ray diffraction patterns. However, it can be seen from Table 1 that there is a decrease in the cell parameter of the cubic ZrO_2 phase which is consistent with an increase in the cobalt content of

TABLE 1
IDENTIFICATION OF PHASES FORMED IN THE Co(II)/ZrO2 SYSTEM

Composition (at% Co)	Phase(s)	X-ray Parameters	
ZrO ₂ = 0	Tetragonal ZrO ₂ plus small amount amount monoclinic ZrO ₂	$\frac{a}{5.081(3)} \frac{c/a}{1.02}$	
Co/(Co+Zr) = 5	Cubic ZrO ₂	5.086(3)	
$Co/(Co+Zr) \approx 10$	Cubic ZrO ₂	5.072(3)	
Co/(Co+Zr) = 15	Cubic ZrO ₂ + Co ₃ O ₄		

this phase. When attempts were made to prepare cubic zirconium oxide containing 15 atomic percent cobalt, bulk Co_3O_4 was evident in the x-ray diffraction patterns. The limit of solubility of cobalt in ZrO_2 is therefore below 15 percent.

A sample of ZrO_2 containing 5 atomic percent cobalt was heated to 600° , 700° and 800° C. The cubic zirconium oxide remains stable at 600° C but at 700° C lines of Co_3O_4 and tetragonal ZrO_2 appear in the diffraction patterns of te products. Finally the monoclinic structure is obtained as the temperature is raised from 700° to 800° C.

The reciprocal magnetic susceptibility versus temperature data for bulk Co_3O_4 (i.e. $Co(II)[Co(III)_2]O_4$) is given in Fig. 1. The sample measured has a moment of 4.8 BM per Co(II), since low-spin Co(III) is diamagnetic. This is consistent with the value reported in the literature (9). Strong spin-orbit coupling is a characteristic of Co(II), which usually does not show a spin-only moment.

Magnetic measurements were also made on zirconium oxide samples containing 5 and 10 atomic percent cobalt. These measurements were made as functions of both

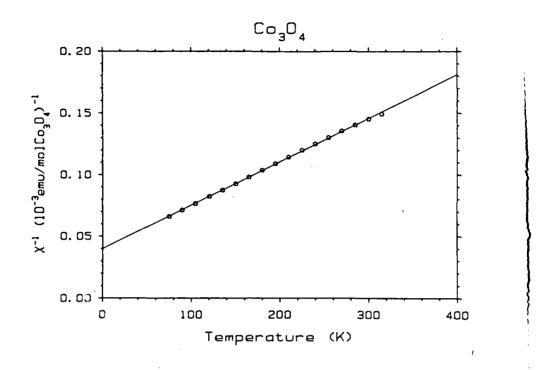
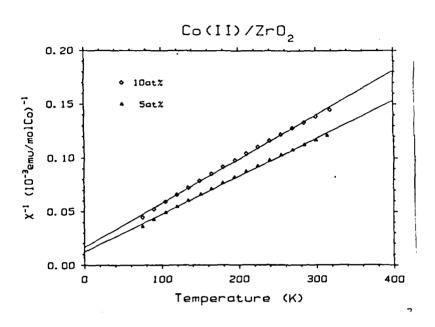



Fig. 1. Reciprocal magnetic susceptibility versus temperature data for bulk Co₃O₄ heated at 500°C for 24 hours.

field and temperature. All samples showed paramagnetic behavior and have no field dependency at either room temperature or liquid nitrogen temperature. The results of the magnetic measurements are plotted in Fig. 2 as reciprocal susceptibility versus temperature. The measured paramagnetic moment for the sample containing 5 atomic percent cobalt is 4.8 BM and hence all of the cobalt present is Co(II). The measured value for the paramagnetic moment per cobalt ion of the sample containing 10 atomic percent cobalt is 4.4 BM which may indicate the coexistence of a small quantity of bulk Co_3O_4 . Additional evidence to substantiate these results follow from the TPR studies.

The temperature programmed reduction studies were carried out in a 85%Ar/15%H2 atmosphere using a thermomagnetic balance. The onset of reduction was detected by the difference in sample weight with and without a magnetic field gradient and arises from the ferromagnetism of cobalt. In the case of bulk Co₃O₄, cobalt metal begins to form at 270°C (Fig. 3), and the sample with 5 atomic percent cobalt in ZrO₂ begins to reduce at 540°C. The stability of cobalt oxide towards reduction is therefore greatly increased by forming solid solution with zirconium oxide.

TPR of the sample containing 10 atomic percent cobalt indicated that there were two kinds of cobalt present in the sample (Fig. 3). Most of the cobalt was reduced above 500° C whereas a small amount of the cobalt began to reduce at 280° C. Therefore most of the cobalt has been inserted into the ZrO_2 but a small amount remains as bulk cobalt oxide. This is consistent with the observed decrease of the paramagnetic moment for the 10 atomic percent sample compared to

Mary Company

COCCUPY COCCUPY COCCUPY COCCUPY COCCUPY

Fig. 2. Reciprocal magnetic susceptibility vs temperature for 5 and 10 at% Co(II)/ZrO₂ heated at 500°C for 24 hours.

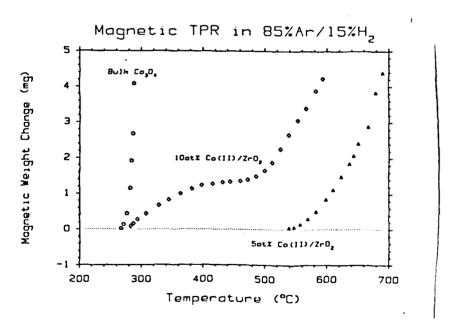


Fig. 3. Variation with temperature of the weight change caused by the application of a magnetic field gradient during the temperature programmed reduction of bulk Co₃O₄, 5 and 10 at% Co(II)/ZrO₂ in 85% Ar/15%H₂.

that obtained for the 5 atomic percent sample. The maximum solubility of cobalt oxide in zirconium oxide is therefore determined to be slightly lower than 10 atomic percent. It appears that codecomposition of the nitrates results in phases which contain cobalt (up to almost 10 atomic percent cobalt) as an integral part of the phase. However, it is only at 15 atomic percent that the presence of bulk cobalt oxide appears in the x-ray diffraction pattern. This is in contrast to the usual method of preparation, i.e. incipient wetness, in which the cobalt oxide is dispersed as a second phase on the ZrO₂.

Acknowledgments

This research was partially supported by the Office of Naval Research and by the Exxon Education Fund. The authors also which to acknowledge the support of the National Science Foundation, Grant No. DMR 820 3667, for the partial support of K. Dwight and the use of the Materials Research Laboratory at Brown University which is funded by the National Science Foundation.

References

- 1. Y-C. Zhang, K. Dwight and A. Wold, Mat. Res. Bull., 21(7), 853 (1986).
- 2. S. Davison, R. Kershaw, K. Dwight and A. Wold, To be published in J. Sol. St. Chem.
- P. Wu, R. Kershaw, K. Dwight and A. Wold. To be published in J. Mat. Sci. Lett.
- 4. K. E. Smith, R. Kershaw, K. Dwight and A. Wold. To be published in Mat. Res. Bull.
- 5. M. Bettman and H.C. Yao, "Materials Science Research" Vol. 10 Sintering and Catalysis. Ed. G. C. Kuczynski, New York 1975, page 165.
- H. C. Yao and M. Bettman, J. of Catal., 41, 349 (1976).

STATES ASSESSED ASSESSED VARIABLE SECRETARY VARIABLE VARIABLES ASSESSED VARIABLE ASSESSED VARIABLE ASSESSED VARIABLE VARIABLES VARIABLES

- 7. M. Schwartz, R. Kershaw, K. Dwight and A. Wold, Mat. Res. Bull., 22(5), 609 (1987).
- R. Collongues and J. Stocker, Compt. Rend. 246, 3641 (1958).
- 9. R. Perthel and H. Jahn, Phys. Stat. Sol. <u>5</u>, 563 (1964).

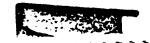
2/1113/87/2

ABSTRACTS DISTRIBUTION LIST, 056:625,629

North Statics Laboratory

North Statics

North St


CL/1113/86/2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<u>!</u>	No. Copies		No. Copies
Office of Naval Research Attn: Code 1113 800 N. Quincy Street Arlington, Virginia 22217-5000	2 -	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	1
Dr. Bernard Ocuda Naval Weapons Support Center Code 50C Crane, Indiana 47522-5050	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko, Code L52 Port Hueneme, California 93401	1 .	Scientific Advisor Commandant of the Marine Corps Code RO-1 Washington, D.C. 20380	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12 high quality	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709	1
DTNSRDC Attn: Dr. H. Singerman Applied Chemistry Division Annapolis, Maryland 21401	t	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 1911	1
Or. William Tolles Superintendent Chemistry Division. Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000	1	Naval Ocean Systems Conter Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1

Correction to Drift does not be conducted to the conducte

CONTRACTOR CONTRACTOR PROGRAMME

ASSTRACTS DISTRIBUTION LIST, 055/625/629

Dr. Morta Metiu Chemistry Department University of California Santa Barbara, California 93106

Or. W. Goddard Department of Chemistry and Chemical Engineering Colifornia Institute of Technology Pasadena, California 31125

Or, Stephen D. Rever Physics Department University Of Oregan Eugene, Gregon 97403

1

Dr. David M. Walba Department of Chemistry University of Colorado Boulder, CO 80309-6215

Dr. 4. Steck! Department of Electrical and Sistems Engineering Pensselaer Polytechnic Institute Troy, New York 12151

Or, G. M. Morrison Department of Chemistry Cornell University Ithaca, New York (A85)

Dr. R. Sruce King Department of Chemistry University of Seorgia Attensy Seorgia 30502

Or. Richard J. Savkally Department of Chemistry Columnity of California Berroley, California (3472)

ABSTRACTS DISTRIBUTION LIST, 538

Or, Karl Frese, Jr. SRI International 333 Ravenswood Avenue Menio Park, California 94025

Or. Aaron fletcher Code 1852 Naval Weapons Center China Lake, California 93555

Dr. A. Wold Department of Chemistry Second University Frowidence, Rhode Island 02912

Br. J. Cooper Code 6170 Maral Research Laboratory Washington, O.C. 20375-5000

Dr. M. C. Baird Department of Chemistry Queen's University Kingston, Canada K7L 3M6

Or, R. R. Lichtin Department of Chemistry Boston University 485 Commonwealth Amenue Boston, Massachusetts 02215

Or. R. Eisenbarg Department of Cremistry University of Rochester Rochester, New York 14627

Dec. Alan R. Cutler
Department of Chemistry
Pennselaer Polytocharc Institute
Troy, NY 12180-3590

Dr. E. Yasha Department of Chemistry Clareson Collect Potscam. New York 13676

Dr. 9. A. Macques Materials Science and Sciencering Legarthers Stanford Linversity Stanford, California 94305

Dr. Carlo Floriani Nimerale et inalvitque Université de Lautenne Place du Crateau 3 Lausanne, Svitzerland

Dr. Hiler Touris Department of Chemistry Case bestern Reserve University Cleveland, Dt. 4410b

Dr. 9. John Cooper Department of Chemistry University of Pittsburgs Pittsburgs, PA 15250

Dr. S. D. Worley Department of Credistry Agam University Auburn, Alabama 16830

Dr. Thomas J. Hever Department of Chemistry University of Forth Caratina Chapel Hill, TC 27518

Or, Jeffrey Zink Department of Chemistry University of California Los Angeles, California 90028

0./1113/87/2

ABSTRACTS DISTRIBUTION LIST, C56/625/529

Dr. G. A. Someriai Department of Chemistry University of California Berbeley, California 94720

Dr. J. Murday Raval Research Laboratory Code 6170 Washington, D.C. 20375-5000

Dr. W. T. Perta Electrical Engineering Department University of Minnesota Minneapolis, Minnesota 55455

Dr. Eeith H. Johnson Department of Metallungy and Naterials Science Massachiests Institute of Technology Cambridge, Massachusetts (22139

Or. S. Sibener Department of Chemistry James France Institute 5640 Ellis Avenue Chicago, Illinois 60637

Br. Arold Green Quantum Surface Dynamics Branch Code 1817 Payel Arspring Canter China Land. California 93555

Dr. A. wold Cepartrant of-Chemisson Brown_university _2minidence. **rode Island 02912 Dr. S. L. Sermason

Dr. S. L. Bernssek Degetrent of Chansaley Princetta .Airensiley Princetta, New versey (1564

De, al ring Concernant of Physics Intermetty of Colofinnia, San Biego La usita, Jalifornia, 97737 Dr. L. Kesmidel Department of Physics Indiana University Bloomington, Indiana 47403

Dr. K. C. Janda University of Pittsburg Chemistry Building Pittsburg, PA 15250

Dr. E. A. Irene Department of Chemistry University of Yorth Carolina Chapel Hill, North Gerolina 27514

Dr. Adam Heller Bell Laboratories Purray Hill, Naw Jersey (17974

Dr. Martin Fleischmann Department of Cremistre University of Southamaton Southamaton SC9 598 UNITED RINGOON

Dr. H. Techitomo Cremistry Dynamicant Jackson State University Jackson, Hississippi 39217

Or. John W. William Cornell University Laboratory of Americand Solid State Presids [thace, New York (4353)

Or. Romald Lee 8305 Ravel Surface waspons Center white Oak Silver Spring, Maryland 20918

Dr. Pripare Summa Congertment of Commissing Land France (microsco 143) Ellis Average Chicago, Clivers (1597

0./1113/87/2

ABSTRACTS DISTRIBUTION LIST, C55/625/629

Or. F. Carter Code 6173 Naval Research Laboratory Washington, D.C. 20175-5000

Or. Richard Colton Code 6170 Maya? Posearch Laboratory Washington, D.C. 20175-5000

Or. Dan Pierce National Bureau of Standards Optical Physics Division Washington, D.C. 20234

Dr. R. G. Mattis Department of Physics University of California Irvine, California 92868

Dr. B. Ramaker Chemistry Department George wishington University Washington, O.C. 20052

Or. J. C. Hometoger Chemistry Doperfront University of California Invine, California 37717

Dr. T. F. George Chemistry Coperment University of Anchester Rochester, New York 1462

Cr. G. Bubleff 139 Thomas J. extson Research Center P. 7. Ext. 219 Toratown relights, Yes Fork 10598

70. 3. Taldeschuteler Teagenment of Chemistry and hearigh Emicretina Taltifumia (notation of Terhander Pasadore) (altifumia 81)25

Tellen D. Stucke Chamis or Lapparement Insurector of the offense Cantal Personal, LA 192,28

Wall de la

Dr. John T. Yates Department of Chemistry University of Pittsburgh Pittsburgh, Pennsylvania 15260

Dr. R. Stanley Williams Department of Chemistry University of California Los Angeles, California 90026

Dr. R. P. Messmer Materials Characterization Lab. General Electric Company Schenectady, New York 22217

Br. J. T. Kottor Department of Chemistry University of Richmond Accimond, Virginia 23173

Dr. R. M. Plumper Department of Physics University of Pennsylvania Philadelphia, Pennsylvania 19104

Dr. E. Teager Department of Chamistry Case western Josephe : niversity Cleveland, Chio 41136

Dr. N. Winograd Copertment or Coperistry Pematelyania Sage university University Para, Pennsylvania 16802

Ľ

Dr. Roald Woffmann Cepartment of Commistry Cornell Interests 1thaca. New York 12953

De Robert L westen Copertment of Commission Copertment of California Lua Angeles, CA 97078

ne Tantol W. Lounderb Tendertmant of Countains Inversity of California Borse By LA 18770

Copy available to DTIC does not primit hely ligible reproduction

<mark>ያዋርላራሲያ</mark>ስፍላዊ የሲፈርት የአስፈርት የተመሰው ያለው የተመሰው የ

END FILMED FEB. 1988 TIC